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Solution 5

1. Show that whenever d is a metric defined on X, then

d(z,y)

ple.y) = s T d@.y)

is also a metric on X. A sequence converges in d if and only if it converges in p.

Solution. M1 and M2 are obvious since d is a metric. To prove M3 consider the function
¢(z) = x/(1+x). We need to show that a < b+ c implies ¢(a) < ¢(b) + ¢(c). First observe
that ¢ is increasing so ¢(a) < ¢(b+ ¢) when a < b+ ¢. Then

b+c

1+b+c¢
b c

T+btc  Ttbre
b c

m+1+c
= ¢(b) +9(c),

o(b+c) =

done.

Next, let x, — = in d, we claim z,, — x in p. In fact, z,, — x means d(z,,x) — 0. By

Limit Theorem,

) limy, 00 d(2p, ) 0

1 = = - = O
P ) = T e d(mma) 10

so x, — z in p. Conversely, using the relation

p(z,y)

dl@,y) = ———— .
( 1—p(z,y)
and applying a similar argument.

Note. d and p may not be equivalent. Consider the standard d on R which is given by
d(z,y) = |x — y|. Observe that p(x,y) < 1 for all z,y. Although trivially p < d, the
other inequality d < Cp cannot hold for any constant C'. For, if then we would have
|z —y| =d(z,y) < C for all z,y!

2. Show that dj is stronger than d; on C[a,b] but they are not equivalent. Hint: Construct
a sequence {f,} in C|0, 1] satisfying || f,|[1 — 0 but || fn|[2 — o0 as n — co.

Solution. Letting f, g € Cla,b], by Cauchy-Schwarz inequality,

b b b
dl(f,g)Z/ \f—g|<\// 1\// (f —9)? =Vb—adaf,9g),

so dy is stronger than d;. Next, define f,, as an even function so that f,(z) = 0 for
x> 1, f,(0) = n?* and linear between [0,1/n]. Then {f,} satisfies our requirement.

Note. In general, it is true that d, is strictly stronger than d, when p < g on C|a, b].
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3. Consider the functional ® defined on C|a, b|

:/b«/l—i—fQ(x) da.

Show that it is continuous in Cla,b] under both the supnorm and the L'-norm. A real-
valued function defined on a space of functions is traditionally called a functional.

Solution. Let h(y m Then ®(f) = fab h(f)dx. Since h'(y) = \/13/72 <1
+y

one has, by the mean value theorem

r¢><f>—<1><g>r</ Ih(f) |dx</ = gl ma [1(s)]dz

s g7

Hence it is continuous in C|[a,b] under both the dj-distance. As d, is stronger than dj,
the functional is also continuous in ds

4. Consider the functional ¥ defined on Cfa,b] given by U(f) = f(x¢) where x¢ € [a,b] is
fixed. Show that it is continuous in the supnorm but not in the L'-norm. Suggestion:
Produce a sequence {f,} with || fu]l1 = 0 but f,(z0) =1, Vn. ¥ is called an evaluation

map.
Solution. |V(f) — ¥(g)| = [f(0) — g(0)] < max,ec(_11|f(7) — g()[. Hence it is con-
tinuous in the do-metric. Let f, be continuous function such that f,(z) = 1,z €

[—1/n,1/n]; fu(x) = 0,2 € [-2/n,2/n], and 0 < f,, < 1. Then ¥(f,) =1 but f, — 0 in
the di-metric.

5. Let ® be a continuously differentiable function on R. Define a function from C0,1] to
itself by G(f)(x) = ®(f(z)). Show that G is continuous.

Solution. For f, — f € C[0,1], let M = max|f| and L = max{|®'(z)| : z € [-M +
1, M + 1]}. By Mean-Value Theorem,

|@(fn(2) = @(f(2))] = |®'(c)(ful@) = f(@))] < Llfn(z) = f(@)] < Ll fn = flloo -

Taking sup over all x, we get

H(I)ofn_q)ofHooSLan_fHoo:

and the conclusion follows. Note that we have used the fact that for large n, f,(z) €
[-M — 1, M + 1] , so that Mean-Value Theorem can be applied.

6. Let K be a continuous function defined on [0,1] x [0,1] and consider the map

1
- /O K(x,y)f(y)dy

Show that this map maps (C[0,1],] - ||1) to (C[0,1],]|| - [|) continuously.

Solution. Let f, — f in L'-norm. We have

T(fule)) - T(F(2))] = 1 [ K Gal) = ) dy| < Ml 7
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where M is the supremum or maximum of K. Taking sup over all z on the left, we get

1T(fn) = T(Nlloc < Kl[fn = fll1

so T is continuous as asserted.

Almost forgot to verify that T o f € C[0,1]. Using the uniform continuity of K, for ¢ > 0,
there is some 0 such that |K(z,y) — K(2/,y')| < ¢ for |(z,y) — (2/,y')| < §. Therefore,

1
T(f(21)) — T(f ()] < /0 K (21,y) — K(z2,9)| |f ()] dy < Ce,

where L
C = f d
/0 ‘ (?/)‘ Yy

is a constant. So T" o f is continuous.

7. Let A and B be two sets in (X, d) satisfying d(A, B) > 0 where
d(A, B) =inf{d(x,y) : (z,y) € Ax B}.

Show that there exists a continuous function f from X to [0, 1] such that f =0in A and
f = 1in B. This problem shows that there are many continuous functions in a metric
space.

Solution. Let dy = d(A, B) > 0. Fix a continuous function ¢ satisfies ¢(0) = 0, p(z) =
L,z > dp, and 0 < ¢ < 1 on [0,00). Our desired function is given by ¢(d(x, A)) after
noting that the composition of continuous functions is again continuous.

Note. Taking A = {21} and B = {x2} be singleton sets consisting distinct points,
d(A,B) > 0 clearly holds. By this problem there is a continuous function which is 0
at x1 and 1 at x5, showing that there are many many continuous real-valued functions on
a metric space.

8. In class we showed that the set P = {f : f(z) > 0,Vz € [a,b]} is an open set in C[a, b)].
Show that it is no longer true if the norm is replaced by the L'-norm. In other words, for
each f € P and each € > 0, there is some continuous g which is negative somewhere such
that ||lg — fll1 < e .

Solution. Fix a point, say, a and consider the continuous piecewise function ¢ which is
equal to 1 at a and vanishes on [a 4+ 1/k,b]. Then

b 1
do = — .
/asﬁk(ﬂﬁ) T = o

Let f € Cla,b] and g = f — (f(a) 4+ 1)pk also belongs to Cla, b] and gi(a) = —1 < 0, but

fla)+1

ok — 0

b
1 = gells = / (@) — g(a)dz =

as k — oo.
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9.

10.

11.

Show that [a, b] can be expressed as the intersection of countable open intervals. It shows
in particular that countable intersection of open sets may not be open.

Solution. Simply observe

DL

la,b] = [ )(a —1/5,b+1/j) .

7j=1

Optional. Show that every open set in R can be written as a countable union of disjoint
open intervals. Suggestion: Introduce an equivalence relation x ~ y if  and y belongs to
the same open interval in the open set and observe that there are at most countable many
such intervals.

Solution.

Let V be open in R. Fix x € V, there exists some open interval I, x € I, I C V. Let I,
= (@, ba), a € A, be all intervals with this property. Let

I, = (ag,bs),a; = inf ay, by = sup b,.
& «

satisfy x € I, I, C V (the largest open interval in V' containing x). It is obvious that
I.NI,# ¢ =1,=1, Let x ~yif I, = I,. Then one can show that ~ is an equivalence
relation. By the discussion above, we have

v=yr- U (Ur)- U

z€V [z]eV/~ \y~z [z]eV/~

which is a disjoint union. Moreover V/ ~ is at most countable since we can pick a rational
number in each I to represent the class [z] € V/ ~. Thus V can be written as a countable
union of disjoint open intervals.

Fill in a proof of Proposition 2.8(b).

Solution. =). Assume on the contrary there is an open G whose f~!(G) is not open,
that is, there is some z € f~(G) so that the balls By /,(x) always intersect the outside of
fHG). Pick x,, € By, () lying outside f~1(G). Since G is open, fix some B,.(f(z)) C G.
That x, lying outside f~!(G) implies f(x,) lying outside G, and in particular B,(f(z)),
so p(f(zn), f(x)) > r > 0 for all n. On the other hand, as x,, — x, by the continuity of f
at x. We have, f(z,) — f(x), that is, p(f(xy), f(z)) — 0, contradiction holds.

<«). Let x,, = xin X. The metric ball B.(f(z)) is openin Y, by assumption f (Bg(f(x)))
is an open set containing z. Hence we can find some metric ball Bs(z) C f~H(B(f(x)).
As x, — x, there is some ng such that z,, € Bs(x) for all n > ng. Hence, f(xn) € B:(f(x))

for all n > ng, done.



