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Solution 5

1. Show that whenever d is a metric defined on X, then

ρ(x, y) ≡ d(x, y)

1 + d(x, y)

is also a metric on X. A sequence converges in d if and only if it converges in ρ.

Solution. M1 and M2 are obvious since d is a metric. To prove M3 consider the function
φ(x) = x/(1+x). We need to show that a ≤ b+c implies φ(a) ≤ φ(b)+φ(c). First observe
that φ is increasing so φ(a) ≤ φ(b+ c) when a ≤ b+ c. Then

φ(b+ c) =
b+ c

1 + b+ c

=
b

1 + b+ c
+

c

1 + b+ c

≤ b

1 + b
+

c

1 + c
= φ(b) + φ(c) ,

done.

Next, let xn → x in d, we claim xn → x in ρ. In fact, xn → x means d(xn, x) → 0. By
Limit Theorem,

lim
n→∞

ρ(xn, x) =
limn→∞ d(xn, x)

1 + limn→∞ d(xn, x)
=

0

1
= 0 ,

so xn → x in ρ. Conversely, using the relation

d(x, y) =
ρ(x, y)

1− ρ(x, y)
,

and applying a similar argument.

Note. d and ρ may not be equivalent. Consider the standard d on R which is given by
d(x, y) = |x − y|. Observe that ρ(x, y) < 1 for all x, y. Although trivially ρ ≤ d, the
other inequality d ≤ Cρ cannot hold for any constant C. For, if then we would have
|x− y| = d(x, y) ≤ C for all x, y!

2. Show that d2 is stronger than d1 on C[a, b] but they are not equivalent. Hint: Construct
a sequence {fn} in C[0, 1] satisfying ‖fn‖1 → 0 but ‖fn‖2 →∞ as n→∞.

Solution. Letting f, g ∈ C[a, b], by Cauchy-Schwarz inequality,

d1(f, g) =

∫ b

a
|f − g| ≤

√∫ b

a
1

√∫ b

a
(f − g)2 =

√
b− a d2(f, g),

so d2 is stronger than d1. Next, define fn as an even function so that fn(x) = 0 for
x ≥ 1, fn(0) = n3/4 and linear between [0, 1/n]. Then {fn} satisfies our requirement.

Note. In general, it is true that dq is strictly stronger than dp when p < q on C[a, b].
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3. Consider the functional Φ defined on C[a, b]

Φ(f) =

∫ b

a

√
1 + f2(x) dx.

Show that it is continuous in C[a, b] under both the supnorm and the L1-norm. A real-
valued function defined on a space of functions is traditionally called a functional.

Solution. Let h(y) =
√

1 + y2. Then Φ(f) =
∫ b
a h(f)dx. Since h′(y) =

y√
1 + y2

≤ 1,

one has, by the mean value theorem

|Φ(f)− Φ(g)| ≤
∫ b

a
|h(f)− h(g)|dx ≤

∫ b

a
|f − g| max

s∈(g,f)
|h′(s)|dx

≤
∫ b

a
|f − g|dx.

Hence it is continuous in C[a, b] under both the d1-distance. As d∞ is stronger than d1,
the functional is also continuous in d∞.

4. Consider the functional Ψ defined on C[a, b] given by Ψ(f) = f(x0) where x0 ∈ [a, b] is
fixed. Show that it is continuous in the supnorm but not in the L1-norm. Suggestion:
Produce a sequence {fn} with ‖fn‖1 → 0 but fn(x0) = 1, ∀n. Ψ is called an evaluation
map.

Solution. |Ψ(f) − Ψ(g)| = |f(0) − g(0)| ≤ maxx∈[−1,1] |f(x) − g(x)|. Hence it is con-
tinuous in the d∞-metric. Let fn be continuous function such that fn(x) = 1, x ∈
[−1/n, 1/n]; fn(x) = 0, x ∈ [−2/n, 2/n], and 0 ≤ fn ≤ 1. Then Ψ(fn) = 1 but fn → 0 in
the d1-metric.

5. Let Φ be a continuously differentiable function on R. Define a function from C[0, 1] to
itself by G(f)(x) = Φ(f(x)). Show that G is continuous.

Solution. For fn → f ∈ C[0, 1], let M = max |f | and L = max{|Φ′(z)| : z ∈ [−M +
1,M + 1]}. By Mean-Value Theorem,

|Φ(fn(x))− Φ(f(x))| = |Φ′(c)(fn(x)− f(x))| ≤ L|fn(x)− f(x)| ≤ L‖fn − f‖∞ .

Taking sup over all x, we get

‖Φ ◦ fn − Φ ◦ f‖∞ ≤ L‖fn − f‖∞ ,

and the conclusion follows. Note that we have used the fact that for large n, fn(x) ∈
[−M − 1,M + 1] , so that Mean-Value Theorem can be applied.

6. Let K be a continuous function defined on [0, 1]× [0, 1] and consider the map

T (f)(x) =

∫ 1

0
K(x, y)f(y)dy .

Show that this map maps (C[0, 1], ‖ · ‖1) to (C[0, 1], ‖ · ‖∞) continuously.

Solution. Let fn → f in L1-norm. We have

|T (fn(x))− T (f(x))| =
∣∣∣∣∫ K(x, y)(fn(y)− f(y)) dy

∣∣∣∣ ≤M‖fn − f‖1 ,
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where M is the supremum or maximum of K. Taking sup over all x on the left, we get

‖T (fn)− T (f)‖∞ ≤ K‖fn − f‖1 ,

so T is continuous as asserted.

Almost forgot to verify that T ◦ f ∈ C[0, 1]. Using the uniform continuity of K, for ε > 0,
there is some δ such that |K(x, y)−K(x′, y′)| < ε for |(x, y)− (x′, y′)| < δ. Therefore,

|T (f(x1))− T (f(x2))| ≤
∫ 1

0
|K(x1, y)−K(x2, y)| |f(y)| dy ≤ Cε,

where

C =

∫ 1

0
|f(y)| dy

is a constant. So T ◦ f is continuous.

7. Let A and B be two sets in (X, d) satisfying d(A,B) > 0 where

d(A,B) ≡ inf {d(x, y) : (x, y) ∈ A×B} .

Show that there exists a continuous function f from X to [0, 1] such that f ≡ 0 in A and
f ≡ 1 in B. This problem shows that there are many continuous functions in a metric
space.

Solution. Let d0 = d(A,B) > 0. Fix a continuous function ϕ satisfies ϕ(0) = 0, ϕ(x) =
1, x ≥ d0, and 0 ≤ ϕ ≤ 1 on [0,∞). Our desired function is given by ϕ(d(x,A)) after
noting that the composition of continuous functions is again continuous.

Note. Taking A = {x1} and B = {x2} be singleton sets consisting distinct points,
d(A,B) > 0 clearly holds. By this problem there is a continuous function which is 0
at x1 and 1 at x2, showing that there are many many continuous real-valued functions on
a metric space.

8. In class we showed that the set P = {f : f(x) > 0,∀x ∈ [a, b]} is an open set in C[a, b].
Show that it is no longer true if the norm is replaced by the L1-norm. In other words, for
each f ∈ P and each ε > 0, there is some continuous g which is negative somewhere such
that ‖g − f‖1 < ε .

Solution. Fix a point, say, a and consider the continuous piecewise function ϕk which is
equal to 1 at a and vanishes on [a+ 1/k, b]. Then∫ b

a
ϕk(x)dx =

1

2k
.

Let f ∈ C[a, b] and gk = f − (f(a) + 1)ϕk also belongs to C[a, b] and gk(a) = −1 < 0, but

‖f − gk‖1 =

∫ b

a
|f(x)− gk(x)|dx =

f(a) + 1

2k
→ 0

as k →∞.
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9. Show that [a, b] can be expressed as the intersection of countable open intervals. It shows
in particular that countable intersection of open sets may not be open.

Solution. Simply observe

[a, b] =

∞⋂
j=1

(a− 1/j, b+ 1/j) .

10. Optional. Show that every open set in R can be written as a countable union of disjoint
open intervals. Suggestion: Introduce an equivalence relation x ∼ y if x and y belongs to
the same open interval in the open set and observe that there are at most countable many
such intervals.

Solution.

Let V be open in R. Fix x ∈ V , there exists some open interval I, x ∈ I, I ⊆ V . Let Iα
= (aα, bα), α ∈ A, be all intervals with this property. Let

Ix = (ax, bx), ax = inf
α
aα, bx = sup

α
bα.

satisfy x ∈ Ix, Ix ⊆ V (the largest open interval in V containing x). It is obvious that
Ix ∩ Iy 6= φ⇒ Ix = Iy. Let x ∼ y if Ix = Iy. Then one can show that ∼ is an equivalence
relation. By the discussion above, we have

V =
⋃
x∈V

Ix =
⋃

[x]∈V/∼

(⋃
y∼x

Ix

)
=

⋃
[x]∈V/∼

Ix,

which is a disjoint union. Moreover V/ ∼ is at most countable since we can pick a rational
number in each Ix to represent the class [x] ∈ V/ ∼. Thus V can be written as a countable
union of disjoint open intervals.

11. Fill in a proof of Proposition 2.8(b).

Solution. ⇒). Assume on the contrary there is an open G whose f−1(G) is not open,
that is, there is some x ∈ f−1(G) so that the balls B1/n(x) always intersect the outside of
f−1(G). Pick xn ∈ B1/n(x) lying outside f−1(G). Since G is open, fix some Br(f(x)) ⊂ G.
That xn lying outside f−1(G) implies f(xn) lying outside G, and in particular Br(f(x)),
so ρ(f(xn), f(x)) ≥ r > 0 for all n. On the other hand, as xn → x, by the continuity of f
at x. We have, f(xn)→ f(x), that is, ρ(f(xn), f(x))→ 0, contradiction holds.

⇐). Let xn → x inX. The metric ballBε(f(x)) is open in Y , by assumption f−1(Bε(f(x)))
is an open set containing x. Hence we can find some metric ball Bδ(x) ⊂ f−1(Bε(f(x)).
As xn → x, there is some n0 such that xn ∈ Bδ(x) for all n ≥ n0. Hence, f(xn) ∈ Bε(f(x))
for all n ≥ n0, done.


